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Abstract

The arrangement of transcription factor (TF) binding motifs (syntax) is an important part of 

the cis-regulatory code, yet remains elusive. We introduce a deep learning model, BPNet, that 

uses DNA sequence to predict base-resolution ChIP-nexus binding profiles of pluripotency TFs. 

We develop interpretation tools to learn predictive motif representations and identify soft syntax 

rules for cooperative TF binding interactions. Strikingly, Nanog preferentially binds with helical 

periodicity, and TFs often cooperate in a directional manner, which we validate using CRISPR-

induced point mutations. Our model represents a powerful general approach to uncover the motifs 

and syntax of cis-regulatory sequences in genomics data.

Introduction

Understanding the cis-regulatory code of the genome is vital for understanding when and 

where genes are expressed and how genetic variation and somatic mutations affect disease. 

Despite extensive efforts to map millions of putative enhancers in a wide variety of cell 
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types and tissues1-3, identifying the critical bases that alter their regulatory information 

remains a major challenge. It is known that short sequence motifs are critical for the binding 

of sequence-specific transcription factors (TFs), but how motif combinations and their 

syntactic arrangements influence TF binding in vivo is not well understood. For example, 

two or more strictly spaced motifs may form composite motifs that provide a platform for 

DNA-mediated cooperativity between the corresponding TFs4. However, whether less strict 

(“soft”) motif spacing preferences exist within enhancers and influence TF cooperativity is 

not clear. The precise rules of the cis-regulatory code remain to be elucidated.

Experimental manipulations of enhancer sequences, such as mutations or synthetic designs, 

strongly support the existence of motif syntax5-12. However, genome-wide analyses have 

rarely identified statistically overrepresented motif syntax rules, questioning whether they 

exist and impose evolutionarily constraints on enhancer function13-17. One limitation is 

that motif instances are typically identified as overrepresented sequences matching position 

weight matrix (PWM) models18-21. When patterns are discovered computationally22-28, they 

are difficult to validate experimentally and the mechanism by which they might affect TF 

cooperativity is not clear. For example, overrepresented instances of strict motif spacings 

are sometimes associated with retrotransposons that contain multiple TF binding motifs23,24. 

On the other hand, when experimental TF binding data are available, i.e. from chromatin 

immunoprecipitation experiments coupled to sequencing (ChIP-seq)29-34, inference of motif 

syntax is still limited by the low resolution of putative binding events identified using 

peak-callers29-34.

There is hence a critical need for a general method that can identify cis-regulatory motif 

syntax based on genome-wide experimental data. Recently, convolutional neural networks 

(CNNs) have been applied towards accurately predicting diverse molecular phenotypes 

including TF binding from DNA sequence35-38. The advantage of CNNs is that they can 

learn flexible predictive models composed of hierarchical layers of arbitrarily complex, 

non-linear pattern detectors, allowing them to capture de novo sequence motifs and their 

higher-order organizational context without making strong prior biological assumptions. 

However, the complexity of these models makes them particularly challenging to interpret. 

While several methods have been developed to visualize TF binding motifs from trained 

CNNs35,36,38-42, methods for extracting the rules by which motif syntax informs TF binding 

are lacking43.

Another critical limitation is the resolution of current CNN models. State-of-the-art models 

of TF binding predict binary binding events35-37 or low-resolution continuous binding signal 

averaged across 100-200 bp windows44. This can limit the ability to learn motif syntax that 

promotes TF cooperativity43, which likely exists in ChIP-seq experiments. For example, 

TFs sometimes bind indirectly to motifs of other TFs16,24,45-47. TF cooperativity is even 

more apparent when the resolution of ChIP-seq is improved by adding an exonuclease 

digestion step (ChIP-exo)48. ChIP-exo methods such as ChIP-nexus generate base-resolution 

footprints precisely over the motif instances bound by the TF in vivo49,50 and these 

footprints differ between directly and indirectly bound motifs50,51. ChIP-nexus profiles have 

also provided evidence that TFs may help the binding of another TF nearby52. Although the 

full extent of TF cooperativity at the level of binding is not known, these results indicate that 
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ChIP-seq data, and especially ChIP-nexus data, are a useful readout for cis-regulatory motif 

syntax, if the data are modeled at sufficiently high resolution.

To discover motif syntax, we developed a novel CNN called BPNet that models the 

relationship between cis-regulatory sequence and TF binding profiles at base resolution. We 

studied the pluripotency TFs Oct4, Sox2, Nanog and Klf4 in the well-characterized mouse 

embryonic stem cell (ESC) model, generating ChIP-nexus data for maximum resolution. 

We trained base-resolution BPNet models on these ChIP-nexus profiles with high predictive 

performance, on par with concordance between replicate experiments. We extended model 

interpretation methods to extract new motif representations that are not based on statistical 

over-representation but directly summarize the predictive influence on TF binding. We then 

developed methods that use the trained BPNet model as an in-silico oracle to measure how 

the distance between motif pairs affects TF cooperativity. We find that strict motif spacings 

in the genome are mainly due to retrotransposons, but that TF cooperativity depends on 

preferential soft motif syntax that is in agreement with experimentally characterized protein-

protein or nucleosome interactions in ESCs. We also observe unexpected rules of TF binding 

cooperativity, including a broad preference for Nanog to bind DNA with helical periodicity, 

and perform experimental validations.

These results suggest that end-to-end neural network models trained on high-resolution 

genomics data, coupled with a dedicated suite of interpretation tools, can serve as a powerful 

tool for discovering the critical bases within cis-regulatory sequences and identifying the 

underlying motif syntax associated with TF cooperativity.

Results

BPNet predicts TF binding profiles from sequence

We performed ChIP-nexus experiments for Oct4, Sox2, Nanog and Klf4 in mouse ESCs 

and obtained genome-wide strand-specific base-resolution profiles for each TF (Fig. 1a). As 

shown for previous TF ChIP-nexus data49, the profiles at known TF binding motifs showed 

consistent stereotypical footprints across various genomic regions, as illustrated by the 

binding of Oct4 and Sox2 to the composite Oct4-Sox2 motif53 (Fig. 1b). These footprints 

not only had higher resolution compared to ChIP-seq data, but also displayed increased 

motif specificity. For example, the Sox2 motif showed a sharp ChIP-nexus footprint for 

Sox2 but not for Oct4, while ChIP-seq data showed binding signal for both (Fig. 1c). We 

identified 147,974 genomic regions of 1 kb length exhibiting statistically significant and 

reproducible enrichment of ChIP-nexus signal for Oct4, Sox2, Nanog or Klf4.

In contrast to all current deep learning models for TF binding, we designed BPNet to 

directly predict the raw base-resolution binding profiles from DNA sequence. Binding 

profiles can be decomposed into the total signal (read counts) and the profile shape (base-

resolution distribution of reads). We reasoned that the profile shape should be predictable 

from 1-kb genomic sequences since minimal enhancer activity can typically be reproduced 

outside its genomic context with sequences of <500 bases54,55. The total signal however 

could be influenced by factors that are not modeled, including chromatin state and higher-

order chromatin organization.
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To achieve high prediction accuracy, BPNet was designed with the following properties (Fig. 

1d). (1) BPNet is a CNN that uses 25 bp wide filters in the first convolutional layer to scan 

the 1-kb region for relevant sequence motifs, followed by nine dilated convolutional layers 

with residual skip connections56,57 and exponential dilation in every layer44,58 to learn 

increasingly complex predictive sequence patterns with a 1-kb receptive field. To preserve 

base resolution, pooling is not used. (2) BPNet uses multi-task learning to jointly train on 

the strand-specific ChIP-nexus profiles of all four TFs. (3) Experimental control data are 

used as an auxiliary input (PAtCh-CAP for ChIP-nexus data59). The signal from this track 

is regressed out during training, which prevents BPNet from learning these experimental 

biases. (4) BPNet uses a multi-scale loss function to separately evaluate the predictions 

of profile shape (using a multinomial negative log-likelihood loss) and total read counts 

(using a mean squared error loss). Model training, hyperparameter tuning and performance 

evaluation were performed on different sets of genomic regions in distinct chromosomes.

To evaluate predictive performance, we inspected individual enhancers located on held-out 

test chromosomes such as those associated with the genes Lefty160, Zfp28161 and Sall162,63 

and found that the predicted and observed ChIP-nexus profiles were noticeably similar, 

with highly concordant summits of footprints (Fig. 1e, Extended Data Fig. 1a). We then 

systematically compared the positions of high ChIP-nexus counts between predicted versus 

observed profiles in all regions of the held-out test set. Strikingly, the positional concordance 

at resolutions ranging from 1-10 bp was on par with replicate experiments and substantially 

better than randomized profiles, average profiles and the control track (PAtCh-Cap) (Fig. 

1f). Other measures of profile concordance confirmed the high prediction performance 

(Extended Data Fig. 1b). We also confirmed that mappability of regions did not bias the 

predictions (Supplementary Fig. 1). These results show that BPNet accurately learned to 

predict the ChIP-nexus binding profiles of all four TFs from DNA sequence.

To identify key components for the high prediction performance, we systematically varied 

the network architecture (Fig. 1g, Extended Data Fig. 1c-e). We found that the large 

number of convolutional layers was critical for predicting all four ChIP-nexus data sets 

and was particularly important for Nanog (Fig. 1g). This indicates that the learned 

sequence patterns required to predict ChIP-nexus profiles span over larger sequence regions 

beyond individual motifs64, especially in the case of Nanog. We also found that the 

relative priority of the profile versus total count prediction tasks during training affected 

prediction performance. Up-weighting the profile prediction task improved the performance 

of the profile predictions. However, irrespective of the relative task weights, the model’s 

performance for total count prediction (Rs = 0.62) did not match replicate-concordance (Rs 

= 0.94, Extended Data Fig. 1f). These results are consistent with our assumption that longer 

sequences or other measurements such as local chromatin state may be required for optimal 

prediction of total TF occupancy64, but that local sequence context (1 kb) is sufficient to 

accurately predict the shape of ChIP-nexus profiles.

A suite of model interpretation tools for TF binding motifs

We next set out to extract the sequence features that were predictive of TF binding from the 

trained BPNet model. We extended our previously developed tool DeepLIFT65 to quantify 
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the contribution of each base within an input sequence to the entire predicted ChIP-nexus 

profile of each TF (Fig. 2a, Methods). These TF-specific contribution scores are illustrated 

at the distal Oct4 enhancer where all four TFs show strong predicted footprints matching the 

observed ChIP-nexus footprints (Fig. 2b top, Supplementary Fig. 2a).

Subsequences with high contribution scores, which we call seqlets, often resemble TF 

binding motifs (Fig. 2b middle). One prominent seqlet matches the composite Oct4-Sox2 
motif, which has previously been mapped to this exact position in the Oct4 enhancer66. This 

motif has high contribution scores for Oct4 and Sox2, which are directly bound to the motif, 

and slightly lower scores for Nanog and Klf4 (Fig. 2b middle), indicating that the Oct4-Sox2 
motif could be indirectly important for the binding of other TFs.

Other seqlets did not readily match known motifs. For example, we found a TGAT 

sequence in the middle of the Nanog footprint (highlighted in Fig. 2a middle), but it was 

unclear whether it is a Nanog motif since previous reports on its consensus have been 

conflicting47,67-72. These results demonstrate the ability of contribution scores to highlight 

TF binding motifs, but also indicate the need to identify and characterize the motifs more 

systematically.

Next, we used TF-MoDISco41 to systematically discover and summarize recurring 

predictive sequence patterns into consolidated motifs from the sequences of all bound 

regions and their associated base-resolution contribution scores. For each TF, TF-MoDISCo 

uses contribution scores to identify, align and cluster seqlets across all bound sequences 

into consolidated motifs (Fig. 2c). For each cluster, a novel motif representation called 

contribution weight matrix (CWM) is derived by averaging the contribution scores of each 

of the four possible bases at every position across the seqlets. A more traditional position 

frequency matrix (PFM) representation, which contains the normalized base frequencies 

instead of the average contribution scores, is also calculated (see Supplementary Note on 

CWMs and PFMs/PWMs).

TF-MoDISco discovered 51 motifs, but 18 of them had unusually long PFMs (>40 bp) 

with high information content (30-100 bits) (Fig. 2d, Extended Data Fig. 2a). This implies 

that the genomic instances of these motifs share near identical base composition across the 

entire length of the pattern (despite being discovered by uniquely mappable ChIP-nexus 

reads). Indeed, we found that the majority of them (>80%) overlapped with annotated repeat 

elements (Extended Data Fig. 2b). The most common were long-terminal repeats (LTRs) 

of endogenous retrotransposon viruses (ERVs), including those of the ERVK, ERVL and 

the ERVL-MaLR family (Extended Data Fig. 2c). Remarkably, the corresponding CWM 

representations of these long PFMs were quite different. Instead of long stretches of 

uniformly overrepresented bases, the CWMs highlighted the shorter subsequences predictive 
of TF binding (Fig. 2d, Extended Data Fig. 2c). This difference between CWM and 

PFM representations provides a means to discover and pinpoint bound motifs within 

retrotransposons.

The remaining 33 motifs were all interpretable TF binding motifs, but contained subsets 

with subtle differences, leading us to select 11 representative motifs for further analysis 
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(Extended Data Fig. 2d, Supplementary Fig. 3). These motifs include the well-known Oct4-
Sox2, Sox2, and Klf4 motifs, as well as the Zic3 and Esrrb motifs, which bind pluripotency 

TFs that we did not profile. All motifs were overall robustly discovered by TF-MoDISCo 

from five different BPNet models trained on different subsets of ChIP-nexus peak regions 

(Supplementary Fig. 4).

Using the 11 representative motifs, we then comprehensively mapped and labeled all 

predictive motif instances in the bound genomic regions. We scanned the base-resolution 

contribution scores of all regions and annotated predictive motif instances that had high 

contribution scores and high match scores to the CWM (Fig. 2c). In total, we obtained 

241,005 unique motif instances in the 147,974 genomic regions, with Klf4 motifs occurring 

most frequently (Fig. 2e). Altogether, 72,696 regions (48.1%) have at least three motif 

instances, and 20,352 regions (13.5%) have at least 5 motif instances (Fig. 2f). These 

genome-wide motif annotations are in agreement with motif instances supported by previous 

independent validation experiments73-75 (Supplementary Fig. 2b-d) and provide a strong 

foundation for analyzing genome-wide motif syntax and characterizing known functional 

enhancers in mouse ESCs (Fig. 2b bottom, Supplementary Fig. 5).

The motif maps derived from BPNet outperformed those obtained by traditional approaches 

such as PWM scanning, assessed by ChIP-nexus footprint height (Extended Data Fig. 

3, Supplementary Note). BPNet correctly identified more motif instances supported by 

footprints in sequences from held-out test chromosomes than MEME18-21 or HOMER76, 

especially for the short Nanog motif. The improved performance is achieved because PWM-

based motif scanning methods compute match scores using only sequence similarity, while 

BPNet’s method also incorporates the predictive contribution scores derived from the entire 

1 kb sequence (Supplementary Fig. 6). The higher motif accuracy requires BPNet to be 

trained on base-resolution profiles, rather than coarse-resolution binary (bound vs. unbound) 

labels (Supplementary Note, Extended Data Fig. 4). This suggests that BPNet leverages the 

profiles to learn the importance of motif instances in their larger sequence context, thereby 

reducing the false discovery rate.

Our method also outperformed traditional methods when using an independent, previously 

published ATAC-seq data set77 for evaluation. After induced depletion of Oct4 or Sox2, 

regions with differential chromatin accessibility (as defined by the authors) overlapped more 

Oct4-Sox2 and Sox2 motif instances ranked by BPNet contribution scores than those ranked 

by motif scores from MEME or HOMER (Fig. 2g, Supplementary Fig. 7a). These results 

support the high accuracy of the BPNet mapped motif instances relative to those obtained 

from traditional motif discovery and scanning methods. They also confirm the link between 

the in vivo binding of Oct4 and Sox2 and their effect on chromatin accessibility.

Finally, we found that the quantitative changes in ATAC-seq signal after Oct4 and Sox2 

depletion can also be accurately predicted from BPNet TF binding models. Specifically, 

linear models trained using the sequence features encoded in the final convolutional layer 

of the BPNet model were able to accurately predict differential accessibility (Fig. 2h). 

These models outperformed linear models trained using only the inferred motif instances 

(Supplementary Fig. 7b). These results indicate that the complete sequence representation 
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learned by BPNet encodes predictive features beyond linear, additive effects of the motif 

instances. Hence, we set out to identify higher-order sequence features such as motif syntax.

Composite motifs and indirect binding footprints

As a first step towards identifying motif syntax, we inspected the motifs identified by 

TF-MoDISCo for composite motifs, the simplest form of motif syntax. Indeed, we not 

only discovered the Sox2 motif and the monomeric Oct4 motif78, but also the composite 

Oct4-Oct4 motif (Fig. 3a), a near-palindromic motif that resembles the MORE and PORE 

motifs bound by Oct4 homodimers79,80. This motif has not previously been shown to be 

bound in ESCs in vivo, but is known to be important during neuronal differentiation81. 

Finally, we rediscovered the Oct4-Sox2 motif, in which the bases with high contribution 

scores correspond to the specific DNA contacts made by the heterodimer (based on the 

Oct1-Sox2 crystal structure)53,82,83 (Fig. 3a). Thus, we discovered composite motifs that are 

consistent with known structural data.

We did not identify the composite Sox2-Nanog motif71 and found no evidence that this 

motif was bound in our ChIP-nexus data (Supplementary Fig. 8a). Instead, we identified 

three Nanog motifs: Nanog, Nanog-alt and Nanog-mix, the latter of which is partially 

similar to the first two. All have a main footprint around a TCA core sequence (Fig. 3b). Our 

primary Nanog motif resembles a previously identified Nanog motif from a thermodynamic 

model of ChIP-seq data72. Consistent with direct binding, a closely matching sequence 

(GCCATCA) is bound by Nanog in an EMSA gel shift assay72. Nanog-alt and Nanog-
mix contain the sequence to which monomeric Nanog is bound in a crystal structure 

(AATGGGC)84. Given these two separate direct DNA contacts, the observed Nanog binding 

footprint likely represents Nanog binding as a homodimer85. But since Nanog-alt contains 

an additional GG to the left (Fig. 3b), we cannot rule out the existence of an unknown Nanog 

binding partner (but it is not Sox2 or Pbx, see Supplementary Fig. 8b,c).

The majority of composite motifs, however, came from retrotransposons. This is consistent 

with previous observations that retrotransposons may contain multiple ancestral TF binding 

sites86-90 (Extended Data Fig. 5a). Among all motif pairs, the top 1% most frequent 

distances mapped in 83% to ERVs and were often larger than 20 bp (Extended Data Fig. 

5b, Supplementary Fig. 9), which exceeds the typical distance between motifs found in 

composite motifs that promote TF cooperativity91,92. This suggests that overrepresented 

strict motif spacings alone are not a reliable indicator of functional motif syntax.

We next analyzed whether the 11 motifs showed evidence beyond strict motif spacings 

for mediating cooperative TF interactions (Fig. 3c). By inspecting the contribution scores 

(Fig. 3d), we found that many motifs were predicted to contribute to the binding of 

other TFs. Moreover, we discovered motifs of pluripotency TFs that we did not profile, 

including the Zic3 and Esrrb motifs, which we validated with additional ChIP-nexus 

experiments (Extended Data Fig. 5c-f). Thus, BPNet predicts that Oct4, Sox2, Nanog, and 

Klf4 frequently bind with the help of motifs from other TFs.

One explanation for this observation is that TFs may be indirectly recruited to motifs of 

other TFs50,51. We therefore inspected the average ChIP-nexus binding footprints of all 
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TFs at all motifs (Fig. 3e). We found that TFs directly bound to their motifs showed sharp 

average ChIP-nexus footprints (marked in gray in Fig. 3e), but that TFs also showed broader, 

more fuzzy footprints at other motifs, which we attribute to indirect binding. The level 

of indirect TF occupancy correlated with the contribution score for the TF (Fig. 3d,e), 

suggesting that the indirect footprints are predicted by BPNet.

Notably, the indirect footprints tended to occur in an asymmetric or directional manner 

(Fig. 3d,e). For example, Nanog was bound indirectly to the Sox2 motif, but Sox2 was not 

detected at the Nanog motif. Since Sox2 and Nanog have been shown to physically interact 

with each other71,93, this suggests that these TFs indeed cooperate in some way, but not 

through a composite motif. We therefore set out to systematically analyze how motif pairs 

influence cooperative binding, as a means to identify functional motif syntax.

Interpreting BPNet reveals cooperative TF interactions

By training on base-resolution profiles, BPNet learned rules of TF cooperativity that we 

could extract by interrogating the trained model in silico like an oracle. We developed two 

complementary in-silico motif interaction analysis approaches that measure how the binding 

of a TF to its motif is affected by a second motif as a function of their relative distance (Fig. 

4, Extended Data Fig. 6, Supplementary Fig. 10). We focused on the motifs most strongly 

bound by each of the four TFs: Oct4-Sox2 (bound by Oct4), Sox2, Nanog, and Klf4. The 

first approach uses synthetically designed sequences (Fig. 4a), while the second mutates 

naturally occurring non-overlapping motifs in genomic sequences (Fig. 4b).

In the synthetic approach, Motif A is embedded in random DNA sequences and the BPNet 

model is used to predict the fold-change in binding of TF A due to the addition of Motif B 
at a range of distances from Motif A (Fig. 4a, Supplementary Videos 1-6). The procedure 

is then repeated by anchoring Motif B and predicting the fold-change in binding of TF B 

as a function of distance to Motif A. The robustness of the results was confirmed by the 

reproducibility of the patterns across five models trained independently on different subsets 

of regions (Supplementary Fig. 11).

Using the synthetic approach on all motif pair combinations, we observed distance-

dependent cooperative TF interactions (Fig. 4a). They were distinct for each motif pair but 

independent of strand orientation (Supplementary Fig. 10b,c). For example, predicted Nanog 

binding at the Nanog motif was strongly enhanced when another Nanog motif was nearby, 

but interestingly, the distance-dependent enhancement exhibited a periodic pattern (Fig. 

4a). A similar periodic binding dependency was observed for Nanog when a Sox2 motif 

was nearby. The magnitude of this interaction was strongest at close distances (<35 bp), 

thus it could be mediated by protein-protein interactions between Sox2 and Nanog71,93 or 

DNA-mediated allostery4,94. For larger inter-motif distances, the impact on Nanog binding 

rapidly diminished, but was still elevated further away in the presence of a Sox2 motif 

(but not a Nanog motif). This was not true the other way around since Sox2 binding to its 

motif was not enhanced by a nearby Nanog motif (Fig. 4a). Thus, BPNet predicts that Sox2 

and Nanog interact and that this cooperative interaction is directional, consistent with the 

indirect footprints we observed.

Avsec et al. Page 8

Nat Genet. Author manuscript; available in PMC 2022 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The motif interaction functions also suggested that the Oct4-Sox2 motif mediates its effect 

through increased DNA accessibility in chromatin, consistent with Oct4 and Sox2 being 

pioneer TFs73,77,95,96. First, Oct4-Sox2 strongly enhanced the predicted binding of Sox2, 

Nanog, and to a lesser extent Klf4, at nucleosome-range distances of 150 bp (Fig. 4a). 

Second, these interactions were directional since the motifs of the other TFs did not 

substantially impact the predicted binding of Oct4 to the Oct4-Sox2 motif, consistent with 

a hierarchical requirement for pioneer TFs to come first and make the region accessible for 

other TFs. Our results therefore suggest that motifs can be classified in a given context by 

their strength as pioneer motifs, i.e. the Oct4-Sox2 is a stronger pioneer motif than Sox2.

We observed very similar distance-dependent cooperative interactions for all motif pairs 

using a complementary motif mutagenesis approach for genomic sequences (Fig. 4b, 

Extended Data Fig. 6). Here, we used the original genomic sequences and predicted the 

binding profile of TF A to Motif A before and after replacing Motif B with a random 

sequence (Motif B −> Motif A) and vice versa. The effect sizes were smaller than in 

the synthetic approach, likely because the genomic motif instances were often of lower 

affinity than the ideal motifs used in the synthetic approach. It is also possible that motif 

mutations can be buffered by the additional motifs present in genomic sequences. However, 

the distance relationship and the directionality of the cooperative interactions were again 

very similar (Extended Data Fig. 6). These relationships can also be summarized as a heat 

map using the distance intervals of <35 bp and 70-150 bp, which highlight the interactions in 

protein-range and nucleosome-range respectively (Fig. 4c).

These results suggest the existence of soft motif syntax: rather than requiring strict inter-

motif distances for cooperative binding, interactions between two motifs occur in a flexible 

but distance-dependent fashion that is specific for each motif pair. To obtain further 

evidence, we asked whether the preferred inter-motif distances are observed in naturally 

occurring genomic regions. We removed retrotransposons containing strictly spaced motifs 

and analyzed whether motif pairs co-occur more frequently than expected by chance at 

certain distances (Fig. 4d, Supplementary Fig. 10b). The Nanog motifs were most strongly 

overrepresented at short distances to Sox2 and other Nanog motifs (<35 bp), consistent 

with their protein-range interactions. At nucleosome-distance (70-150 bp), the Oct4-Sox2 
motif still co-occurred with Nanog, consistent with its pioneering role. Although BPNet 

is designed to capture potential motif interactions up to 1 kb apart, we did not identify 

significantly overrepresented motif pairs beyond 150 bp (Fig. 4d). Altogether, we detected 

genome-wide soft preferences for motif spacings that correspond to some extent with 

detected cooperative binding interactions and thus are likely functionally relevant soft motif 

syntax.

Nanog binding has a strong ~10.5-bp periodic pattern

The most remarkable soft motif syntax we observed was a ~10.5 bp periodicity associated 

with Nanog. We first observed periodicity in the full-length CWM of the Nanog motif, 

which showed flanking A/T bases in a periodic pattern (Fig. 5a). This pattern is not 

seen in the corresponding PFM representation, suggesting that the A/T bases are not 

statistically overrepresented, but when present, contribute strongly to the Nanog binding 
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predictions. The strong periodic pattern is confirmed in the individual contribution scores 

of Nanog motif instances, shown as heat map and average contribution scores (Fig. 5b). A 

Fourier power spectrum analysis of the contribution scores around the Nanog motif revealed 

strong periodicity averaging around 10.5 bp (+/− 0.3 bp) (Fig. 5c), which falls within the 

observed 10-11 bp periodicity of the DNA helix observed in vitro and in vivo97-100. This 

helical periodicity was also found for other motifs important for predicting Nanog binding, 

including Nanog-mix, Nanog-alt, Sox2, Oct4-Sox2 and Zic3. But the same motifs did not 

predict periodic binding for other TFs, suggesting that the helical periodicity is specific 

for Nanog binding (Fig. 5d), consistent with its behavior in the in-silico motif interaction 

analysis.

To obtain further evidence of this periodicity, we tested whether Nanog’s soft syntax 

was naturally found in genomic DNA sequence. Indeed, the pairwise distance between 

our mapped Nanog motif instances showed a strong helical spacing preference for 

multiples of ~10.5 bp, independent of motif orientation (Fig. 5e). This periodicity was 

reproducibly inferred from five independent models on different subsets of the binding data 

(Supplementary Fig. 12a). Despite being present in genomic DNA, this pattern had not 

been discovered previously47,67-72, presumably because it is difficult to find with traditional 

methods and requires BPNet’s large receptive field to learn motifs in a larger sequence 

context (Extended Data Fig. 7).

The in-silico motif interaction analysis also predicted enhanced periodic binding 

cooperativity of Nanog in the presence of other motifs. In support of this, the mapped 

genomic distances between Nanog and either Sox2 or Oct4-Sox2 motif instances also 

showed strong preferred distances of helical periodicity regardless of motif orientation 

(Fig. 5f-g). This was also true for the distances between Nanog and Zic3, indicating that 

Zic3 is an additional interaction partner (Fig. 5h). Furthermore, the Nanog ChIP-nexus 

profiles themselves also showed this periodic pattern (Fig. 5i-k, Supplementary Fig. 12b, 

Supplementary Fig. 13). The signal in the original data likely explains how BPNet was able 

to learn the preferred binding pattern of Nanog during training.

The helical periodicity suggests that Nanog binding is enhanced when the relevant partner 

motifs are found on the same side of the DNA. Since Nanog physically interacts with 

Sox271,93 and preferentially interacts at protein-protein distance in our in-silico motif 

interaction analysis, it is possible that Nanog engages in cooperative protein-protein 

interactions similar to those observed for the lambda and lac repressors101,102. Alternatively, 

the helical periodicity could be due to preferred binding of Nanog to nucleosomal DNA 

from the solvent surface, which has been observed for some homeodomain TFs103,104.

Altogether, we identified helical periodicity as a strong cis-regulatory motif syntax for 

Nanog, a biophysical parameter that BPNet was not explicitly trained on. This result 

demonstrates the power of neural networks to discover novel patterns de novo without 

making explicit prior assumptions about the nature of the sequence features.
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CRISPR validates the motif syntax between Nanog and Sox2

To experimentally validate the motif syntax identified by BPNet, we performed targeted 

point mutations in mapped motifs and compared the observed changes in the ChIP-nexus 

profiles to those predicted by BPNet (Fig. 6). Since the most striking motif syntax was 

the helical periodicity of Nanog and the directional cooperativity with Sox2, and since 

the Nanog motif had been uncertain before47,67-72, we selected a genomic region that has 

a Nanog and Sox2 motif, as well as periodic Nanog binding. Using CRISPR/Cas9 and 

homologous recombination, we performed two-base substitutions in either the Sox2 motif 

(TTG to AGG) or the Nanog motif (TGA to GGC). We then performed Sox2 and Nanog 

ChIP-nexus experiments on wild-type and mutant ESCs, using three independently derived 

clones per motif mutation. All replicate experiments were highly correlated and possessed 

indistinguishable normalized binding profiles and counts across known enhancers (Extended 

Data Fig. 8, Supplementary Fig. 14).

We then examined how the binding profiles were affected by the mutations. As expected, 

mutating the Sox2 motif specifically abolished the corresponding Sox2 binding footprint 

(Fig. 6a). However, mutating the Nanog motif did not affect Sox2 binding (Fig. 6b), while 

mutating the Sox2 motif strongly affected Nanog binding (Extended Data Fig. 8b). Nanog 

binding was almost completely lost near the Sox2 mutation and still reduced at the nearby 

Nanog motif (Fig. 6c).

This directional cooperativity is strikingly consistent with the results from the in-silico 
motif interaction analysis performed across all genomic sequences (Fig. 4b) and with 

the asymmetry observed in the indirect binding footprints of Nanog and Sox2 (Fig. 3c). 

In addition, the short-range cooperativity of Nanog was confirmed. Namely, when the 

Nanog motif was mutated, not only was the corresponding footprint of Nanog abrogated as 

expected, but the surrounding periodic Nanog binding was also reduced as predicted (Fig. 

6d).

Altogether, these results confirm that the derived syntax rules are predictive and applicable 

to individual examples. This demonstrate that BPNet can be used to derive novel, testable 

biological hypotheses on how the cis-regulatory motif syntax influences TF binding.

Discussion

Here we introduced BPNet, a versatile and interpretable deep learning tool to learn TF 

motifs and the rules of syntax that best predict experimental data at base resolution. 

To leverage the unprecedented resolution of BPNet and showcase its ability to reveal 

novel biological insights, we applied it to ChIP-nexus data in ESCs. The results were 

not only consistent with previous findings, but revealed new details and principles of cis-

regulatory motif syntax. We found that TF binding is guided by soft syntax rules, which 

follow clear inter-motif distance-dependent relationships consistent with protein-protein 

interactions16,105, or nucleosome-mediated cooperativity106. Such soft syntax rules represent 

an intermediate between the strict motif syntax associated with the original enhanceosome 

model107,108 and the very flexible syntax suggested by the billboard model14. The TF 

cooperativity associated with specific motif pairs was often directional and consistent with 
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motifs mediating the role of pioneer TFs with different strengths. Finally, we observed a 

strong preference for Nanog to bind with ~10.5 bp helical periodicity. Helical periodicity has 

long been thought to be a possible element of the cis-regulatory code25,27,101,102,107,109-112. 

Our finding that the helical periodicity is motif-encoded and TF-specific provides a guidance 

for identifying this feature for other TFs in the future.

As we will outline below, BPNet represents a new paradigm for discovering relevant 

motifs and syntax rules underlying the cis-regulatory code. Through several important 

design innovations (Supplementary Note), as well as extensive quality control and rigorous 

evaluations to ensure that the method works as intended, BPNet outperforms both traditional 

methods and previous deep learning models (Supplementary Note). BPNet outperforms 

traditional methods because it infers predictive patterns in a larger sequence context and 

does not rely on overrepresented sequence patterns. BPNet outperforms previous neural 

networks by modeling TF binding profiles at base resolution, which enables it to learn subtle 

cooperative interactions between motifs (Extended Data Fig. 4). The result is a powerful and 

general computational framework for deciphering the cis-regulatory code from a variety of 

genomics assays.

An important innovation was the development of tools that make the trained BPNet model 

interpretable. Computational models in regulatory genomics have long grappled with an 

inherent tradeoff between prediction accuracy and interpretability, but the BPNet framework 

enables both. The key to enhancing interpretability was the distillation of predictive motif 

representations and context-aware motif instances from the entire neural network, rather 

than direct interpretation of millions of cryptic, partially redundant parameters of the trained 

model. Importantly, by using BPNet as an in-silico oracle, we systematically predicted the 

effect of mutated sequences or synthetic sequence designs, which enables us to extract the 

influence of pairwise motif spacing on TF cooperativity. The precise oracle predictions, 

which are not possible with classical models, allow less scalable in vivo experiments such 

as the CRISPR editing experiments to be performed on the most interesting and promising 

observations.

The advantage of BPNet over classical methods is that it detects motifs and their syntax 

in a fundamentally different way. Classical methods for motif discovery rely on motifs 

being overrepresented over background sequences18-21. Similarly, existing approaches to 

infer syntax rules use summary statistics of overrepresented co-occurrence patterns1,23,113. 

These methods have limited statistical power to test individual features present in complex 

cis-regulatory sequences (Supplementary Note). By contrast, BPNet’s vast network capacity 

allows it to learn complex predictive rules agnostically based on their ability to accurately 

predict relevant experimental profiles, without explicitly defining features a priori. This 

allows the discovery of relatively rare but nonetheless predictive motifs (e.g. Oct4-Oct4), 

as well as predictive syntax features, such as helical periodicity or the direction of TF 

cooperativity, that were not known to be relevant for these TFs.

BPNet’s approach of modeling the entire cis-regulatory sequence is better suited for 

deciphering the combinatorial requirements for TF binding in vivo. Traditionally, a TF 

binding site is defined by its strong affinity in in-vitro experiments or by statistically 
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significant sequence matches to PWM models. In both cases, a selection is typically made 

by arbitrary thresholds before the role of motif combinations, syntax and sequence context is 

considered113,114. However, our results suggest that in vivo, TF binding to a motif instance 

is by itself a highly cooperative process that depends on neighboring motifs and syntax. 

Indeed, this explains how enhancer function can critically depend on low-affinity binding 

sites10,52,115. The fact that BPNet discovered subtle predictive patterns that are not strong 

matches to PWM motif models (e.g. the predictive bases in the flanks of Nanog motifs) 

and outperformed classical methods for identifying motif instances relevant in vivo (Fig. 

2g-h, Supplementary Note) suggests that modeling putative motif instances within their 

cis-regulatory context is an important advantage.

Finally, BPNet is designed to be a general and versatile end-to-end approach adaptable to 

a number of genomic assays. It is ideally suited to learn from high-resolution genomic 

data, but its base-resolution output is still beneficial for lower resolution data since it 

does not discard any information present in the training data profiles. For example, we 

successfully trained BPNet models on ChIP-seq profiles for the same TFs and obtained 

motifs that were highly similar, including a periodic Nanog motif (Extended Data Fig. 

9 and 10, Supplementary Note). The number and accuracy of motif instances was lower 

than those from ChIP-nexus profiles models, but better than those from models trained on 

coarse-resolution binary binding labels (Extended Data Fig. 10c,d). Similarly, we found 

that BPNet can accurately model base-resolution DNase-seq profiles116. This suggests that 

applying BPNet to existing compendia of ChIP-seq, DNase-seq and ATAC-seq data, such as 

those generated by ENCODE will improve the systematic mapping of cis-regulatory motifs 

and their rules of syntax in a variety of cellular contexts. To foster the broad application 

of BPNet, we have made the entire software framework available with documentation and 

tutorials.

Learning motifs and syntax-dependent regulatory influence for a variety of genomic 

assays in many cell types will build a more complete understanding of the cis-regulatory 

code and reveal how specific bases influence the various molecular steps associated 

with enhancer function. At the same time, these models will provide opportunities to 

pinpoint causal quantitative trait and disease-associated genetic variants and understand 

the molecular mechanisms by which they alter gene regulation. Ultimately, the ability to 

decipher the cis-regulatory code will unlock an enormous amount of information underlying 

organismal development, its maintenance and pinpoint therapeutic intervention opportunities 

for diseases.

Online method

Cell culture

R1 ESCs were cultured on 0.1% gelatin-coated plates without feeder cells in N2B27 

medium (DMEM/F12 with 1:1 mix of GlutaMax/N2 and Neurobasal medium/B27, 

Invitrogen) supplemented with 2 mM L-Glutamine (Stemcell Technologies), 1x 2-

Mercaptoethanol (Millipore), 1x NEAA (Stemcell Technologies), 3 μM CHIR99021 

(Stemcell Technologies), 1 μM PD0325901 (Stemcell Technologies), 0.033% BSA solution 

(Invitrogen) and 107 U/ml LIF (Millipore).
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ChIP-nexus, PAtCh-Cap and ChIP-seq experiments

For each ChIP-nexus experiment, 10 million ESCs were used. Cells were washed with 

PBS and cross-linked with 1% formaldehyde (Fisher Scientific) in PBS for 10 min at 

room temperature. The reaction was quenched with 125 mM glycine. Fixed cells were 

washed twice with cold PBS, resuspended in cold lysis buffer (15 mM HEPES (pH 7.5), 

140 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 1% Triton X-100, 0.5% N-lauroylsarcosine, 

0.1% sodium deoxycholate, 0.1% SDS), incubated for 10 min on ice and sonicated with 

a Bioruptor Pico (Diagenode) for five cycles of 30 s on and 30 s off. The ChIP-nexus 

procedure and data processing were performed as previously described49 except that the 

ChIP-nexus adaptor mix contained four fixed barcodes (ACTG, CTGA, GACT, TGAC) and 

that the PCR library amplification was performed directly after the circularization of the 

purified DNA fragments (without addition of the oligo and BamHI digestion). PAtCh-Cap 

was performed as described59with 10% of sheared chromatin from 10 million ESCs. ChIP-

seq experiments were performed as described119 with 10 million ESCs per ChIP.

For each ChIP, 5 μg antibody was coupled to 50 μl Protein A or Protein G Dynabeads 

(Invitrogen). The following antibodies were used: α-Oct3/4 (Santa Cruz, sc-8628), α-Sox2 

(Santa Cruz, sc-17320), α-Sox2 (Active Motif, 39843), α-Nanog (Santa Cruz, sc-30328), α-

Klf4 (R&D Systems, AF3158), α-Klf4 (Abcam, ab106629), α-Esrrb (Abcam, ab19331), α-

Pbx 1/2/3 (Santa Cruz, sc-888), and α-Zic3 (Abcam, ab222124). For all experiments, at least 

two biological replicates were prepared, i.e. the experiments were performed on different 

days starting with cells from a different passage number. Single-end sequencing was 

performed on either an Illumina HiSeq instrument (50 cycles) or NextSeq 500 instrument 

(75 cycles).

Mutation of binding motifs using CRISPR/Cas9 technology

Using mouse R1 ESCs, the predicted Nanog motif on chr10: 85,539,756-85,539,765 

(mm10) was mutated from CTGATGGCT (wildtype) to CGGCTGGCT (mutant). The 

predicted Sox2 motif on chr10: 85,539,634-85,539,643 (mm10) was mutated from 

CCTTTGTTCC (wildtype) to CCTAGGTTCC (mutant). Guide RNA (gRNA) target sites 

were designed using CCTop target predictor tool120 by evaluating the predicted on-target 

efficiency score and the off-target potential121. The single-stranded donor oligonucleotides 

(ssODN) were designed containing ~40 bases of homology from the targeted cut site (gRNA 

and ssODN sequences are shown in Supplementary Table 3). A ribonucleoprotein (RNP) 

complex was formed by combining 90 pmol of gRNA (ordered as Alt-R sgRNA; IDT, USA) 

and 10 pmol of Cas9 HiFi protein (IDT) and hybridizing for 10 min at room temperature. 

The RNP was combined with 100 pmol of ssODN donor and delivered to cells by Neon 

electroporation (1500 V, 10 ms, 3 pulses; Neon Transfection System, Model MPK5000, 

Life Technologies). Single cells were screened for the expected mutations through paired-

end sequencing on an Illumina MiSeq instrument (250 cycles). On-target indel frequency 

and expected mutations were analyzed using CRIS.py122. Only clones with the intentional 

mutation and sequence alignments above 90% were chosen for future experiments.

Per target site, three monoclonal cell lines were selected and used as replicate experiments: 

clones B07, B09 and F10 for the mutant Nanog motif, and clones B07, B11 and C10 for 
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the mutant Sox2 motif. For the wild-type R1 ESCs control samples, at least two biological 

replicates were prepared as above. ChIP-nexus was performed as described above with 20 

million ESCs and 5 μg α-Nanog (Abcam, ab214549) or α-Sox2 (Active Motif, 39843) per 

replicate. The following fixed fixed barcodes were used: AGTC, CAGT, GTCA, TCAG. 

Single-end sequencing was performed on an Illumina NovaSeq instrument (100 cycles) to 

obtain a coverage of ~400 million reads per experiment.

ChIP-nexus data processing pipeline

Random barcodes and fixed barcodes were trimmed off the reads and reassigned to 

FASTQ labels using nimnexus (v0.1.1). The adapters were then trimmed using cutadapt 

(v1.8.1)123. Next, the reads were aligned with Bowtie (v1.1.12)124,125 using the command 

bowtie --chunkmbs 512 -k 1 -m 1 -v 2 --best --strata to the mouse genome assembly 

mm10. Mutant samples were aligned to a modified mm10 genome that accommodated the 

CRISPR changes. Mapping stats were computed using SAMtools flagstat (v1.2)126. Reads 

were filtered using SAMtools view to remove unmapped reads and mates, non-primary 

alignments, PCR or optical duplicates (-F 1804) and reads that failed platform or vendor 

quality checks or had poor mapping quality (MAPQ <30). Reads aligned to the same 

position with the same barcode, CIGAR string and the SAM flag were de-duplicated using 

nimnexus dedup (v0.1.1). The total number of final (filtered) aligned reads was 243M 

for Oct4, 140M for Sox2, 214M for Nanog and 176M for Klf4. The final filtered BAM 

file was converted to tagAlign format (BED 3+3) using bedtools `bamtobed` (v2.26)127. 

Cross-correlation scores were obtained for each file using phantompeakqualtools (v1.2)128. 

BigWig tracks containing the strand-specific number of aligned 5' read ends (pooled across 

all replicates) were generated using bedtools genomecov −5 -bg -strand <+/−>, followed by 

bedGraph to BigWig conversion using UCSC bedGraphToBigWig version 4129.

Peaks were called using MACS2 (v2.1.1.20160309) by extending 5’-ends of reads on each 

strand using a 150 bp window (±75 bp) and then computing coverage of extended reads 

across both strands (shift=−75, extsize=150). For each TF, peak calling was performed 

on filtered, aligned reads from each replicate using a relaxed p-value threshold of 0.1 

and retaining the top 300,000 peaks as described128. Relaxed peak calls were similarly 

performed on pseudo-replicates, which were obtained by pooling filtered, aligned reads from 

all replicates for a TF and randomly splitting the pooled reads into two balanced pseudo-

replicates. Peaks overlaping the blacklisted regions listed in https://www.encodeproject.org/

files/ENCFF547MET/ were excluded. The Irreproducible Discovery Rate (IDR) framework 

was used to obtain reproducible peaks across the true replicates and pseudo-replicates130. 

The set with the larger number of peaks was defined as the IDR optimal peaks for each TF: 

25,849 for Oct4, 10,999 for Sox2, 56,459 for Nanog, and 57,601 for Klf4. Regions of 1 

kb centered on the peak summits were used as inputs to BPNet. All samples passed quality 

control metrics used in the ENCODE TF ChIP-seq pipeline128 (Supplementary Table 1).

The nim-nexus code is available at https://github.com/Avsecz/nimnexus/. The 

ChIP-nexus pipeline performing the described steps (e.g. turning the 

raw reads in the FASTQ format to BigWig coverage tracks and the 

called peaks) is available at https://github.com/kundajelab/chip-nexus-pipeline. A 
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detailed pipeline specification is available at https://docs.google.com/document/d/

1h9lZ0GyVWd02RCmtaFWSaSFzrcNHoH_OgyPHMpU7b04. ChIP-seq datasets were 

processed using the ENCODE ChIP-seq pipeline https://github.com/ENCODE-DCC/chip-

seq-pipeline2/releases/tag/v1.2.2. It is identical to the ChIP-nexus pipeline except that it uses 

the SPP peak caller29 and does not use barcodes for read de-duplication.

BPNet architecture

BPNet is a sequence-to-profile convolutional neural network that uses one-hot-encoded 

DNA sequence (A=[1,0,0,0], C=[0,1,0,0], G=[0,0,1,0], T=[0,0,0,1]) with adjustable length 

as input to predict base-resolution read count profiles as output. For flexibility, the 

architecture of BPNet can be compartmentalized into the body and multiple task-specific 

output heads. The body of BPNet consists of a sequence of convolutional layers with 

residual skip connections and ReLU activations57. The first convolutional layer uses 64 

filters of width 25 bp, followed by 9 dilated convolutional layers (64 filters of width 3 in 

each layer) where the dilation rate (number of skipped positions in the convolutional filter) 

doubles at every layer. This results in a receptive field of +/−1034 bp for any position 

in the genome. The output of the final convolutional layer within the BPNet body (also 

referred to as the bottleneck activation map) serves as input for two output heads per TF: 

i) a deconvolutional layer (filter width=25, typical ChIP-nexus footprint width) predicting 

the strand-specific probabilities of observing a particular read at a particular position in the 

input sequence (shape or profile prediction) and ii) a global average pooling layer followed 

by the fully connected layer predicting the total number of read counts aligned to the 

input sequence for each strand (total read count prediction). The training occurs for all TF 

ChIP-nexus experiments together in a multi-task fashion. BPNet architecture (without bias 

correction) implementation in Keras 2.2.4 is provided in Supplementary Methods.

BPNet loss function

Let kobs be the vector of length L of observed read counts for a particular strand and a 

particular task (i.e., TF) along the sequence of length L. Let ppred be the vector of length 

L of predicted probabilities along the sequence, such that ∑i pi = 1 and let nobs = ∑iki
obs be 

the total number of observed counts and npred the total number of predicted counts for the 

sequence. The following loss function is used for each sequence, strand and task:

Loss = − log pmult . (kobs ∣ ppred, nobs) + λ(log(1 + nobs) − log(1 + npred))2 .

The first term evaluates the error in the shape of the predicted profile. It is the multinomial 

negative log-likelihood of observed base read counts given the predicted probabilities and 

the total number of observed counts. The second term evaluates the squared error of the log 

total number of reads in the region. During BPNet training, the total loss function is the sum 

of individual loss functions across both strands, all input sequences and all tasks.

The key hyper-parameter is λ. In Supplementary methods (Relationship between the 

Poisson log-likelihood, mean-squared error and multinomial log likelihood), we show that if 

λ = nobs ∕ 2, where nobs is the average number of total counts in our training set, the profile 
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loss and the total count loss will be roughly given equal weight. To upweight the profile 

predictions relative to the total count predictions, λ = α
2 nobs with α < 1 can be used.

BPNet’s control for biases

Experimental assays often have small biases that can be measured by control experiments 

(input for ChIP-seq and PAtCh-CAP for ChIP-nexus59). To prevent the sequence-to-profile 

model from learning these non-informative bias signals, the model tries to explain the target 

experimental track (e.g., the Oct4 profile) using both the sequence-based model predictions 

fmodel
ℎ (seq; wℎ) for specific head h and the control experiment track ctl:

ypred
ℎ = fmodel

ℎ (seq; wℎ) + fctl
ℎ (ctl; wctl

ℎ ),

where fctl
ℎ (ctl; wctl

ℎ ) is a neural network based transformation of the control track trying to 

explain data for head h. The integration with the control data therefore occurs after the 

task-specific model head fmodel
ℎ . We require that fctl

ℎ (ctl; wctl
ℎ ) = 0 if the control track is 0 (i.e. 

bias not present) so that the model fmodel
ℎ  represents the bias-free part of the signal. Each 

head/track will have a different bias transformation either by having different parameters or 

wctl
ℎ  even a different architecture for fctl

ℎ . For the total count prediction head, fctl
ℎ (ctl; wctl

ℎ ) is 

simply wctl
ℎ log(1 + nctl), where nctl is the total number of reads from the control experiment 

in the modeled local region. For the profile prediction head, fctl
ℎ (ctl; wctl

ℎ ) is a weighted 

sum of i) the raw counts and ii) a smoothed version of the raw counts using a sliding 

window sum of 50 bp (since control data are often sparse). During model training, the 

parameters of fctl
ℎ (ctl; wctl

ℎ ) are also trained to best explain the output using the control track. 

This framework easily integrates multiple control tracks, or control tracks predicted from 

sequence using a bias model learned on other data such as deproteinized genomic DNA for 

DNase-seq131.

BPNet training and hyper-parameter tuning

ChIP-nexus profiles of Oct4, Sox2, Nanog and Klf4 were used to train and evaluate BPNet. 

Regions from mouse chromosomes 2, 3 and 4 (20%) were used as the tuning set for hyper-

parameter tuning. Regions from chromosomes 1, 8 and 9 (20%) were used as the test set for 

the performance evaluation (Supplementary Methods). The remaining regions were used for 

model training. Hyper-parameters were manually adjusted to yield best performance on the 

tuning set. All neural network models were implemented and trained in Keras (v2.2.4)132 

(TensorFlow backend v1.6) using the Adam optimizer133 (learning rate = 0.004) and early 

stopping with patience of 5 epochs.

DeepLIFT contribution scores for sequence-to-profile models

DeepLIFT is a feature attribution method for computing the contribution of each base 

(feature) in an input sequence to a specific scalar output prediction from a neural network 

model65. DeepLIFT decomposes the difference between the output prediction from an input 
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sequence versus that of a neutral reference input sequence as an additive combination of 

contribution scores of all bases (D features) in the input sequence:

f(x) − f(r) = ∑
i

D
ci

where ci is the contribution of feature i in input x to the model output prediction f(x) 

compared to model prediction f(r) based on the reference input r.

The output of BPNet for each head is however not a scalar, but a tensor of 2D L x S, where 

L is the sequence length and S is the number of output channels or strands for ChIP-nexus. 

We therefore needed to adapt DeepLIFT and defined the profile contribution score of a base 

with respect to the entire output profile as follows:

c(profile) = ∑
i, s

cispis

where pis is the predicted probability values for position i and strand s, obtained by 

normalizing the profile predictions on the logit scale using the softmax function along the 

sequence axis: p = Softmax(f(x)). cis is the contribution score of the base with respect to 

the (scalar) profile prediction on the logit scale at position i and strand s. A weighted sum 

is used to ensure that positions with high predicted profile output values are given more 

weight, but has the disadvantage that it would normally require the contribution scores to 

be computed L x S (=2,000) times for each 1 kb input sequence per TF. To drastically 

speed up this computation, we exploit the backpropagation algorithm used in DeepLIFT and 

the additive decomposition of DeepLIFT scores. We define a new TensorFlow operation as 

follows:

f(x) = ∑
i

Const(pi(x))fi(x),

where Const denotes the tf.stop_gradients operation which treats the wrapped expression 

pi(x) as a constant. By applying DeepLIFT to f(x), we obtain the desired result in a single 

DeepLIFT backpropagation step:

c(profile) = ∑
i, s

cispis .

Pseudo-code of the described operation in TensorFlow code is:

wn = tf.reduce_mean(tf.reduce_sum(tf.stop_gradient(tf.nn.softmax(f, dim=−2)) * f, 

axis=−2), axis=−1).

For the reference input r, all zeroes were used since it showed the highest 

correlation with in-silico mutagenesis contribution scores, defined as the weighted 

sum of the profile prediction changes at all profile locations after introducing 
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a mutation at a particular position. The DeepLIFT contribution scores were 

computed with TensorFlow v1.6 using the DeepExplain implementation of DeepLIFT 

(repository fork available at https://github.com/kundajelab/DeepExplain/, with commit hash: 

738c7145e915a7a48f3a4248d088bcc2e1a94614).

Motif discovery using TF-MoDISco

TF-MoDISco (v0.5.1.1) was run on DeepLIFT profile contribution scores for each TF 

separately (using all 1 kb peak regions bound by the TF on autosomes). Significant seqlets 

were selected by computing contribution scores over a width of 21 bp and using the 

FDR threshold of 0.01 (target_seqlet_fdr). The null distribution was estimated from 4,800 

randomly selected peaks with contribution scores computed on reshuffled sequences while 

preserving dinucleotide counts. A total of 145,748 non-overlapping significant seqlets were 

identified. Due to memory constraints (250 GB), 50,000 seqlets were used for each TF 

during the clustering/motif-discovery phase of TF-MoDISco. For all discovered motifs, the 

PFM and CWM are computed from the aligned seqlets by averaging the base frequencies 

and the contribution scores, respectively. See Supplementary Methods for more details.

Clustering of discovered motifs

Motifs were aligned to each other in all possible offsets and strand combinations, and 

a pairwise distance metric was generated using the smallest continuous Jaccard distance 

metric41 on the PFM information content between each motif pair. Hierarchical clustering 

was performed in scipy (v1.2.1) using the Ward variance minimization algorithm134 

(method='ward') and optimal leaf ordering135 (Extended Data Fig. 2d). From these clusters, 

11 representative TF motifs were manually selected.

CWM scanning to identify motif instances

Once BPNet is trained, it is possible but not necessary to use the experimentally measured 

ChIP-nexus profiles during model interpretation. For the mapping of motifs with TF-

MoDISco and CWM scanning, no experimental information was used. CWM scanning was 

developed because TF-MoDISco only analyzes 50,000 seqlets per run. Trimmed CWMs 

were used to scan the contribution scores of all 147,974 peak regions (as done by TF-

MoDISco) and computing the following similarity metric. Let wCW M ∈ ℝLW × 4 denote the 

CWM of length LW and C ∈ ℝLS × 4 denote the contribution scores for one-hot-encoded 

sequence s of length LS≥ LW. The contribution score Ci,b for base b at position i is 0 if base 

b was not observed in the actual sequence (i.e. if si,b = 0). We decompose the similarity 

metric between the CWM scanning position i of the contribution scores into the 'contrib' 

score, computed as the L1 norm of the contribution scores at positions between i and i+LW 

in the scanned sequence:

Scorecontrib(wCW M, C, i) = ∑
j = 1

LW
∑

b = 1

4
∣ Ci + j − 1, b ∣ ,
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and the 'match' score, which represents its similarity to the CWM computed using the 

continuous Jaccard distance metric41 between the CWM and L1 normalized contribution 

scores:

Scorematcℎ(wCW M, C, i) = Jaccard( wCW M
‖ wCW M ‖1

,
Ci: i + LW , b

‖ Ci: i + LW , b ‖1
),

At each position i, the maximum 'match' score (Scorematch) between wCWM and its reverse-

complement version is chosen. To call motif instances from the CWM scanning scores, three 

criteria were defined based on thresholds identified from the TF-MoDISco’s corresponding 

seqlets: (i) The 'match' score >20th percentile of those of the seqlets. This stringent threshold 

more effectively discriminates between similar motifs. (ii) The 'contrib' score is higher than 

the seqlets lowest 'contrib' score. (iii) The log odds score with respect to the PWM derived 

from the PFM is larger than 0.

In-silico motif interaction analysis

In the synthetic approach, two consensus motifs were inserted into 128 random background 

sequences of 1 kb: Motif A at the center and Motif B downstream at distance d between the 

motif centers (max at 160 bp). The average strand-specific ChIP-nexus profile predictions 

PAB for the TF that binds Motif A was then obtained using the trained BPNet model as 

oracle. Additional profiles were predicted by i) inserting only the Motif A in the center 

(PA), ii) inserting only the Motif B d-bases downstream of the center (PB), and iii) not 

inserting any motif (PØ). The strand-specific summit (maximum) location of the footprint 

was then determined for each strand from profile PA within 35 bp of the Motif A center. 

These summit locations were used to determine the footprint height h within all four 

profiles to obtain hA, hB, hAB, and hØ. The influence of Motif B on Motif A was then 

defined by the corrected binding fold-change (hAB - (hB - hØ)) / hA as a function of 

d. The procedure was repeated to quantify the influence of Motif A on the binding of 

TF B to Motif B. In the genomic motif interaction approach, the motif pair interactions 

were calculated in the same way using motif instances that were mapped by CWM 

scanning in genomic sequences underlying ChIP-nexus peaks, excluding motif instances 

overlapping retrotransposons. Instead of inserting motifs into the random sequence, motifs 

were removed from the genomic sequence by replacing them with random sequences (see 

also Supplementary Methods, Supplementary Fig. 10).

Reproducibility

All ChIP-nexus and ChIP-seq replicate experiments passed quality control metrics used 

by ENCODE128 (Supplementary Table 1). For Sox2 and Nanog, we used two different 

antibodies for each with reproducible results: the initial wild-type Sox2 ChIP-nexus 

experiments used two different antibodies (sc-17320 and Active Motif 39843) with IDR 

rescue ratio of <2; the wild-type and CRISPR Nanog ChIP-nexus experiments also used 

two different antibodies (sc-30328 and ab-214549) with consistent Nanog footprints on 

Nanog motifs (Extended Data Figure 3). The entire pipeline, including the training of 

BPNet, computing the contribution scores, obtaining motif representations, and analysing 
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motif interactions, was performed in 5-fold cross-validations, which support our claims 

(Supplementary Information, Supplementary Fig. 4, Supplementary Fig. 11, Supplementary 

Fig. 12). The CRISPR mutant and wild-type experiments were consistent in profile and 

counts at control enhancers (Extended Data Fig. 8), and replicate experiments were highly 

reproducible (Supplementary Fig. 14).

Data Availability Statement

The raw sequencing data are available from GEO under the accession number GSE137193. 

Data used to train, evaluate and interpret the BPNet models are found on ZENODO 

at https://doi.org/10.5281/zenodo.3371215. Trained BPNet models and all the model 

interpretation results are on ZENODO at https://doi.org/10.5281/zenodo.3371163. The 

BPNet model trained on ChIP-nexus data is available on Kipoi under the name 

"BPNet-OSKN" (http://kipoi.org/models/BPNet-OSKN/). Genome browser tracks showing 

observed/predicted ChIP-nexus signal and the contribution scores for all factors are 

available at https://genome.ucsc.edu/s/mlweilert/mesc_OSKN_tracks. ATAC-seq data in 

mouse ESCs used in Fig. 2 and Supplementary Fig. 7 have been obtained from 

GSE134680. Blacklisted regions used to filter genomic coordinates throughout the analysis 

are available at https://www.encodeproject.org/files/ENCFF547MET. RepeatMasker mm10 

annotations are from http://www.repeatmasker.org/genomes/mm10/RepeatMasker-rm405-

db20140131/mm10.fa.out.gz. The NMR structure 1O4X used to render Sox2 and Oct1 

in Fig. 3 is available at https://www.rcsb.org/structure/1o4x. TRANSFAC (v7.0) was 

used to identify the TFIIIC B-box discussed in Fig. 3. The PH0134.1 Pbx PWM used 

for motif validation in Supplementary Fig. 8 and Extended Data Fig. 5 was obtained 

from JASPAR at http://jaspar.genereg.net/api/v1/matrix/PH0134.1.jaspar. The MA0141.1 

Esrrb PWM used in Extended Data Fig. 5 was obtained from JASPAR at http://

jaspar.genereg.net/api/v1/matrix/MA0141.1.jaspar. The tRNA database GtRNAdb (v2.0, 

release 17.1) annotations and associated tRNAscan-SE scores used in Extended Data 

Fig. 5 are from http://gtrnadb.ucsc.edu/GtRNAdb_archives/release17/genomes/eukaryota/

Mmusc10/mm10-tRNAs.tar.gz.

Code Availability Statement

The BPNet software package is available at https://github.com/kundajelab/bpnet/. Code to 

reproduce the results is available at https://github.com/kundajelab/bpnet-manuscript (https://

doi.org/10.5281/zenodo.4294813). The ChIP-nexus data processing pipeline is available at 

https://github.com/kundajelab/chip-nexus-pipeline. Software to trim and de-duplicate ChIP-

nexus reads is available at https://github.com/Avsecz/nimnexus/.
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Extended Data

Extended Data Fig. 1. Additional performance evaluation of BPNet’s predictions of ChIP-nexus 
data
a) Observed and predicted ChIP-nexus read counts mapping to the forward strand (dark) 

and the reverse strand (light) for the Zfp281 and Sall1 enhancers located on the held-

out (test) chromosome 1. b) Alternative profile shape evaluation metrics showing the 

difference to random predictions: multinomial negative log-likelihood and Jensen-Shannon 

(JS) divergence. Both metrics were computed at different resolutions (from 1 bp to 10 bp 

windows) in held-out test chromosomes 1, 8 and 9. c) auPRC of profile predictions is high 

across various learning rates on the tuning set chromosomes 2, 3 and 4, demonstrating 

the robustness of the model. d) The deconvolutional layer slightly improves the profile 

predictive performance compared to a point-wise convolutional layer (deconvolution 

size=1). e) auPRC of profile predictions (top) and the Spearman correlation of total count 

predictions (bottom) for a range of different relative total count weight α in the BPNet 

loss function parameterized as λ = α/2 n_obs. Relative weight of 1 (center) denotes equal 

weighting of the counts and profile loss functions. The best performance is obtained for 

α < 1, showing that putting more weight to profile predictions aids both profile and count 

predictions. f) Observed and predicted total read counts for BPNet (top) and replicate 

Avsec et al. Page 22

Nat Genet. Author manuscript; available in PMC 2022 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



experiments (bottom) across the four studied TFs along with the Spearman correlation 

coefficient.

Extended Data Fig. 2. Removal of long motifs in retrotransposons and clustering of motifs by 
similarity
a) Among all motifs discovered by TF-MoDISco, 18 motifs display unusually high 

information content (IC) of >30 bits (green). The expected short motifs are shown in gray. b) 
Histogram of the overlap of short motifs (gray) and long motifs (green) with repeat elements 

shows that long motifs overlap >80% with annotated retrotransposons. c) Long motifs with 

their PFM, ID, fraction of motif instances overlapping with a repeat and the most frequent 

(top class) RepeatMasker annotation. Highlighted within the repeat elements are potential 

motif instances of Oct4-Sox2, Sox2, Nanog and Klf4 as indicated by the CWMs. d) To 

identify a set of representative motifs from the 33 short motifs discovered for different 

TFs (information content <30 bit, shown in Supplementary Fig. 3) and remove redundant 

short motifs, motifs were clustered by similarity using hierarchical clustering. The results 

were then manually inspected to select clusters that separate known motifs that are distinct 

(e.g. Oct4-Oct4 resembles the known MORE and PORE motifs that bind Oct4 homodimers, 

which is different from the monomerically bound Oct4 motif). Among very similar motifs 

within a cluster, we then selected the most abundant motif that was discovered for the most 
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relevant TF if known). The 11 representative motifs that we selected are shown on the left. 

Non-canonical motifs were given a name (Nanog-alt for Nanog alternative, Klf4-long for 

longer Klf4).

Extended Data Fig. 3. BPNet and TF-MoDISco outperform traditional methods in motif 
discovery and the mapping of motif instances
a) Motifs discovered by ChExMix, HOMER and MEME for Oct4, Sox2, Nanog and Klf4 

ChIP-nexus peaks that are closest to the 11 primary representative BPNet motifs (top row). 

Green checkmark denotes whether the discovered motif is similar to the BPNet motif. b) 
Number of motif instances located up to 500 bp (top) or 100 bp (bottom) away from the 

ChIP-nexus peak summits showing a strong ChIP-nexus footprint. Only motif instances in 

peaks from held-out test chromosomes (1, 8 and 9) were used for the evaluation. (x-axis) 

top N motif instances from each of the methods were sorted in descending order of scores 

(PWM log odds score or CWM contrib score). For BPNet-augm, the center of the genomic 

region for which the contribution scores were computed was randomly jittered up to 200 bp 

away from the peak summit. This augmentation prevents BPNet from using the positional 

information of the peak summit. In the final column (Nanog replicate), the Nanog ChIP-

nexus footprint was measured by a separate biological replicate using a different antibody 

(α-Nanog from Abcam, ab214549), which was not used during training or evaluation.
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Extended Data Fig. 4. BPNet training on ChIP-nexus profiles is faster and yields more accurate 
motif instances than a binary classification model
a) Predictive performance as measured by the precision-recall curve of the binary 

classification models predicting the presence or absence of ChIP-nexus peaks from 1 kb 

DNA sequences evaluated across the held-out (tuning/validation) chromosomes 2, 3 and 

4. The model trained to classify the sequences is outperformed when the model is trained 

to also predict the ChIP-nexus profiles from DNA sequence (without or without profile 

bias-correction) in addition to classifying them is shown in blue (without or without profile 

bias-correction) in light blue and with bias-correction in dark blue). b) Training time of the 

binary classification model trained genome-wide and the sequence-to-profile model (BPNet) 

trained in ChIP-nexus peaks. c) Detected motifs by TF-MoDISco using the contribution 

scores in ChIP-nexus peaks of the sequence-to-profile BPNet (profile reg.) or the binary 

classification model (binary class). A light color denotes a high number of seqlets for each 

motif. Motifs not discovered or motifs supported by less than 100 seqlets are shown in 

black. Questionable motifs are displayed separately on the right. d) The number of motif 

instances (500 bp within ChIP-nexus peak summit) showing a ChIP-nexus footprint (y-axis) 

within the top N motif instances with highest contribution scores (x-axis) from the held-out 

(test) chromosomes 1, 8 and 9. A site was considered to show a ChIP-nexus footprint if 

the number of reads at the position of the aggregate footprint summit (averaged across both 
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strands) is higher than the 90th percentile value of all motif instances detected by the profile 

regression model for the corresponding TF (i.e. same as in Extended Data Fig. 3b).

Extended Data Fig. 5. Strict motif spacings are found on retrotransposons and indirectly bound 
motifs can be validated
a) To show that TF binding occurs with strict spacings in retrotransposons and that this is 

likely ancestral, the RLTR9E N6 motif is shown as an example. Sequences of the individual 

instances in the genome were sorted by the Kimura distance from the consensus motif, 

with the most similar sequences on top (which are likely more ancestral). Nanog, Sox2 

and Klf4 ChIP-nexus binding footprints are shown in the same order on the right (+ strand 

reads in red, − strand reads in blue), revealing that the binding site spacing is largely 

constant across all sequences. b) Analysis of the most frequent distances between motif 

pairs (with >500 co-occurrences, distance measured at the trimmed motifs’ centers). The top 

1% most frequent distances mapped in 83% to ERVs and were often longer than 20 bp. c) To 

validate the identified Zic3 motif instances, Zic3 ChIP-nexus experiments were performed. 

The average signal across the Zic3 instances reveals a strong Zic3 binding footprint. d) 
A similar validation was performed for the Esrrb motif instances, revealing that the Esrrb 

ChIP-nexus signal is present but more diffuse at the discovered Esrrb motif instances. 

e) To better understand the binding of Oct4 to the B-box, which is frequently found in 
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tRNA, tRNA-overlapping B-box motif instances were reoriented to match the transcriptional 

direction and sorted by tRNA gene start proximity. This reveals Oct4 binding at tRNA gene 

start/stop sites. f) Amino acid anti-codons and their copy count of the tRNAs that overlapped 

with the B-box motif instances.

Extended Data Fig. 6. Additional genomic in-silico interaction analyses confirm the directional 
effects
a) Example genomic in-silico mutagenesis analysis at the distal Oct4 enhancer. Predicted 

ChIP-nexus profiles and the contribution scores greatly decrease at both motifs (Oct4-Sox2 
and Nanog) when erasing the Oct4-Sox2 motif (through random sequence insertion). By 

contrast, when the Nanog motif is erased (right), the predicted profile and the contribution 

scores of Oct4-Sox2 motif remain intact. b) Such directional effect of motifs can be 

quantified by the corrected binding fold change (Supplementary Fig. 10a) for all motif 

pairs in the genome and visualized as a scatterplot. c) Example scatterplot for the interaction 

between Sox2 and Nanog. Sox2 shows a positive directional effect on Nanog most profound 

for short motif distances (<35 bp). d) Predicted binding fold changes for all motif pairs in 

genomic sequences.
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Extended Data Fig. 7. Helical periodicity of Nanog motifs is not discovered with traditional 
methods and requires BPNet’s large receptive field
a) The pairwise spacing of Nanog motif instances located up to 100 bp away from the ChIP-

nexus peak summits in all possible strand orientations (rows) for different methods and/or 

thresholds (columns). Results for all chromosomes are shown. b) The pairwise spacing of 

Nanog motif instances when BPNet is trained with different numbers of convolutional layers 

(Fig. 1g). BPNet with only a single convolutional layer (first column) is unable to capture 

the 10 bp periodicity due to the limited receptive field similar to PWMs.

Extended Data Fig. 8. The ChIP-nexus data on CRISPR-mutated ESCs are highly reproducible
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a) Nanog and Sox2 ChIP-nexus profiles normalized to reads per million (RPM) show 

highly similar profiles and read counts across known enhancer regions for wild-type (Wt) 

and CRISPR ESCs with either a mutated Sox2 motif (Sox2 CRISPR) or mutated Nanog 
motif (Nanog CRISPR) at a selected genomic region (chr10: 85,539,626-85,539,777). b) 
Pairwise comparisons of ChIP-nexus RPM counts between Wt and CRISPR ESCs at bound 

genomic regions (151 bp centered on the respective motif) with Sox2 ChIP-nexus counts 

on Sox2 motifs and Nanog ChIP-nexus counts on Nanog motifs (motifs based on the 

original model). The bulk data (gray) are highly correlated and known enhancer regions as 

shown in Supplementary Fig. 5 (green) are highly reproducible between ESC lines. Note the 

specific loss of counts in the selected mutated genomic region (red) over wild-type. Pearson 

correlations (Rp) between groups are shown in the top left of each scatter plot.

Extended Data Fig. 9. The base-resolution BPNet model can be trained on ChIP-seq profiles
a) Observed read counts (Obs) and Predicted read counts (Pred) for BPNet trained on ChIP-

seq data for the Zfp281 and Lefty1 enhancers located on the held-out (test) chromosome 1, 

with forward strand reads (dark) and reverse strand reads (light). For Obs, a sliding window 

of 50 bp was used to smooth the raw 5' end read counts (line); raw counts are shown 

as points on the bottom at y=0. b) BPNet predicts the ChIP-seq profile shape better than 

replicates. Multinomial log-likelihood difference compared to the constant model was used 

to evaluate the profile shape quality at different resolutions (from 1 bp to 10 bp windows) 

in held-out chromosomes 1, 8 and 9. A log-likelihood of 0 corresponds to the constant 

model. Multinomial log-likelihood was conditioned on the observed number of total counts 

as in the training loss. c) Total counts in 1 kb regions can be predicted by BPNet (red) at 

decent accuracy (measured by Pearson correlation with log(1+observed values)). They do 

not surpass replicate performance (blue), but are well above the Input control (grey). d) Obs 
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and Pred as in panel a, as well as contribution scores for the known Oct4 enhancer. Motif 

instances derived by CWM scanning are highlighted with a green box.

Extended Data Fig. 10. BPNet trained on ChIP-seq discovers similar motifs and recovers the 
Nanog motif periodicity
a) BPNet applied to ChIP-seq discovers the majority of the motifs identified by BPNet 

applied to ChIP-nexus data. The models 'ChIP-nexus profile cr' and 'ChIP-seq profile cr' 

were trained on the union of the ChIP-nexus/seq peaks predicting Oct4, Sox2, and Nanog 

binding and were interpreted on the intersection of the ChIP-nexus/seq peaks. b) The 

pairwise spacing of Nanog motif instances derived from the ChIP-seq profile model in 

all possible strand orientations shows helical periodicity (similar to Extended Data Fig. 

7a). c) Motif instance calling with CWM scanning has higher accuracy for BPNet trained 

on ChIP-nexus data than for BPNet trained on ChIP-seq data (evaluated on the union of 

the ChIP-nexus/seq peaks, 500 bp around the peak summit using ChIP-nexus footprints 

as ground truth). d) Training a sequence-to-profile model on ChIP-seq data yields more 

accurate motif instances (500 bp around the ChIP-seq peak summits using ChIP-nexus 

footprints as ground truth) than training a binary classification model or using a PWM 

scanning approach using FIMO for motifs derived directly from ChIP-nexus data. See 

Extended Data Fig. 3b, 4d and Supplementary Note for more details.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: BPNet predicts ChIP-nexus signal at base resolution
a) ChIP-nexus experiments were performed on Oct4, Sox2, Nanog and Klf4 in mouse ESCs. 

After digestion of the 5’ DNA ends with lambda exonuclease, strand-specific stop sites were 

mapped to the genome at base resolution. Bound sites exhibit a distinct footprint of aligned 

reads, where the positive (+) strand peak occurs many bases before the negative (−) strand 

peak. b) Profile heatmaps of Oct4 and Sox2 ChIP-nexus data at the 500 Oct4-Sox2 motifs 

with the most ChIP-nexus reads (color depth for each strand represents normalized signal 

intensity). c) The average Oct4 and Sox2 ChIP-nexus footprints and ChIP-seq profiles at 

the 500 Oct4-Sox2 or Sox2 motifs with the most reads. The ChIP-nexus data have higher 

resolution and show less unspecific binding of Oct4 to the Sox2 motif. d) Architecture of 

the convolutional neural network (BPNet) that was trained to simultaneously predict the 

ChIP-nexus read counts at each strand for all TFs from 1 kb DNA sequences, while being 

prevented from learning information already explained by a bias track (PAtCh-Cap control). 

e) Observed and predicted ChIP-nexus read counts for the Lefty enhancer located on the 

held-out test chromosome 8. f) BPNet predicts the positions of high ChIP-nexus signal 

within the profiles at replicate-level accuracy as measured by the area under precision-recall 

curve (auPRC) at resolutions from 1 to 10 bp in held-out test chromosomes 1, 8 and 9. 

Results for the average ChIP-nexus profile, the PAtCh-Cap control profile and a randomized 

profile are shown as control. g) More convolutional layers (x-axis) increase the number 

of input bases considered for profile prediction at each position (receptive field) and this 

yields increasingly more accurate profile shape predictions on the tuning chromosomes 2-4 

(measured in auPRC as above), showing that larger sequence context is important
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Fig. 2: TF motifs and their genomic instances can be accurately derived from BPNet using 
interpretation tools
a) DeepLIFT recursively decomposes the predicted TF-specific binding output of the model 

and quantifies the contribution of each base of the input DNA sequence by backtracking 

the prediction through the network. b) Procedure for inferring and mapping predictive motif 

instances using the known distal Oct4 enhancer (chr17:35504453-35504603) as an example. 

From the predicted ChIP-nexus profile for each TF (top), DeepLIFT derives TF-specific 

profile contribution scores (middle). Regions with high contribution scores (called seqlets) 

resemble TF binding motifs. Seqlets are annotated by scanning the contribution scores with 

motifs discovered by TF-MoDISco (bottom). c) To discover motifs, TF-MoDISco scans for 

seqlets, extends the seqlets to 70 bp, performs pairwise alignments and clusters the seqlets. 

For each cluster, a motif is derived as contribution weight matrix (CWM), obtained by 

averaging the contribution scores of each of the 4 bases at each position across all aligned 

seqlets. The corresponding position frequency matrix (PFM) is the frequency of bases at 

each position. Motif instances are identified by scanning the CWM for each motif for high 

scoring matches across the profile contribution scores in the genomic regions. d) Example 

of a motif (N6) where the PFM differs from the CWMs. The PFM indicates that it is 

a repeat sequence (RLTR9E), while the CWM for each TF highlights the sequences that 

contribute to binding. e) Number of motif instances in thousands (k) found in the ~150,000 
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genomic regions for the 11 representative motifs. f) Histogram of the number mapped 

motif instances in thousands (k) found per region. g) Evaluation of the mapped motifs 

using previously identified regions that lose ATAC-seq signal in response to either Oct4 or 

Sox2 depletion (but not both)77. BPNet motif instances of Oct4-Sox2 and Sox2 (ranked by 

contribution scores) outperformed those obtained by HOMER and MEME (ranked by PWM 

match scores). h) A linear model based on the bottleneck layer of the trained BPNet model 

makes accurate quantitative predictions of the log fold-change loss in ATAC-seq signal upon 

depletion of Oct4 (ΔOct4) or Sox2 (ΔSox2). Results are shown with Pearson correlation 

coefficient (Rp) for the test chromosomes 1, 8 and 9 that were held out during training. See 

Supplementary Fig. 7b for a similar model based on motif instance features.
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Fig. 3: Discovery of composite motifs and indirect binding footprints
a) The CWMs of Oct4, Oct4-Oct4, Sox2 and Oct4-Sox2 were identified by TF-MoDISco 

as separate motifs (motif IDs = first letter of the TF + number, e.g. O1 discovered for 

Oct4), highlighting its ability to identify composite motifs. The CWM of the Oct4-Sox2 
composite motif correlates with the structure of Oct1 and Sox2 bound to the Oct4-Sox2 
motif. For visualization, the amino acids of Oct1 and Sox2 that contact DNA are shown as 

solid, and the atoms in the DNA bases, shown as colored spheres, are sized according to 

the contribution scores shown in the CWM below. b) Nanog ChIP-nexus binding footprints 

were associated with three Nanog motif variants (shown as CWM). For all motifs, the main 

footprint was found at the TCA sequence. The CWM of Nanog-mix (N5) and Nanog-alt 
(N4) contain a sequence that matches the sequence AATGGGC bound by Nanog in a 

crystal structure84. The CWM of Nanog-alt contains an alternative GG. c) The discovered 

representative short motifs contain known motifs, new motifs and known motifs new in this 

context. All sequence logos share the same y-axis. The B-box mediates RNA polymerase 

III transcription117,118 and is associated with high levels of Oct4 binding upstream and 

downstream of tRNA (Extended Data Fig. 5e,f). d) The average contribution score of the 

motif is shown for each TF. The highest score may indicate the TF that binds directly. e) 
The TF’s average ChIP-nexus footprint better indicates whether the motif is directly bound 

(sharp profile, marked with gray background), indirectly bound (fuzzy profile) or not bound 

at all. The footprints for each TF share the same y-axis.
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Fig. 4: In-silico motif interaction analysis reveals TF cooperativity and motif syntax
a) In the synthetic motif interaction analysis, Motif A is inserted into random sequences and 

the average profile for TF A is predicted by BPNet. The footprint’s summits are recorded 

(dotted lines) and the height (hA) is measured at this position. Motif B is then inserted at 

a specific distance (d) from Motif A into a new set of random sequences and the average 

predicted footprint height is measured at the reference summit position (hAB at dotted lines). 

The interaction of Motif B->Motif A as a function of d is quantified as the footprint height 

fold-change (hAB /hA) after correcting hAB for shoulder effects or indirect binding footprints 

from the nearby motif (Supplementary Fig. 10a). The interaction of Motif A->Motif B is 

obtained in an analogous way. The results show functions consistent with protein-range 

interactions between Nanog and Sox2 or nucleosome-range interactions exerted by the 

Oct4-Sox2 motif (bound by Oct4) on the binding of Sox2, Nanog or Klf4 on their respective 

motifs. Results are shown for the +/+ orientation of the two motifs (see Supplementary 

Fig. 10c for all motif pair orientations and Supplementary Fig. 10b for the frequency of 

motif pairs). b) In the genomic motif interaction analysis, naturally occurring instances of 

Motif A and Motif B as determined by CWM scanning are used. The average predicted 

footprint height and position of TF A is measured in the presence of Motif B (hAB) and 

after replacing Motif B with random bases (hA at dotted lines). The same corrected footprint 

height fold-change hAB /hA or hBA /hB as a function of d is used to quantify the interaction. 

The results from the average of all motif orientations is similar to those in the synthetic 

motif interaction analysis. c) Quantification of the results shown in (b) as heat map. The 

distances <35 bp is shown as representative for protein-range interactions, while 70-150 bp 

is shown as representative for nucleosome-range interactions. d) Odds by which two motifs 

are found within a specified distance from each other divided by the odds the two motifs 

would be found in the proximity by chance (observed by permuting the region index). * 

denotes p-value <10−5 using Pearson's Chi-squared test (Supplementary Methods).
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Fig. 5: Pervasive helical periodicity between Nanog and partner motifs
a) The CWM, but not the PFM, of the main Nanog motif has periodically occurring 

contributing bases in the flanks (example in enlarged window). b) A heat map of the 

contribution scores of the individual Nanog instances also show this periodic pattern, the 

average of which is shown below. c) A Fourier power spectrum of the average contribution 

score around Nanog motif instances (after subtracting the smoothed signal) reveals an 

average periodicity of 10.5 +/− 0.3 bp. d) Fraction of the power spectrum with 10.5 bp 

periodicity of the average contribution scores around the motifs discovered for each TF (19 

for Oct4, 10 for Sox2, 19 for Nanog, and 13 for Klf4) shows that the helical periodicity is 

specific for Nanog binding. Important motifs are labelled; unlabeled high-scoring motifs are 

from retrotransposons. The box-plots mark the median, the upper and lower quartiles, and 

the 1.5x interquartile range (whiskers). e) The pairwise spacing of Nanog motif instances 

in all possible orientations also show a periodic pattern (++ includes the −− orientation). 

f-h) Heterologous motif combinations of Nanog with Sox2, Oct4-Sox2 and Zic3 also show 

a preferred spacing with the same periodicity. The distance between two motifs is always 

kept positive by placing the second motif in the pair downstream of the first motif. All 

4 motif orientations are considered: + denotes the motif lies on the forward strand and − 

denotes the motifs on the reverse strand. i-k) Nanog ChIP-nexus signal at the reference 

summit position for each motif instance across every motif pair (blue dots), with the smooth 

curve fit (B-splines) depicted as a red line and the 95% confidence intervals depicted as blue 

ribbon. Number of data-points used to estimate 50 smoothing parameters for each plot: 8930 

for Nanog<>Nanog, 4011 for Sox2<>Nanog, and 4947 for Oct4-Sox2<>Nanog. Nanog on 

average binds higher when Nanog motifs have the preferred inter-motif distance.
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Fig. 6: CRISPR mutations in a Sox2 and Nanog motif validate BPNet’s predictions
(a-d) A Sox2 motif and Nanog motif in a selected genomic region were mutated 

through CRISPR/Cas9 and homologous recombination in mouse ESCs. Predicted and 

observed ChIP-nexus profiles (+ strand above zero, − strand below zero) in reads 

per million (RPM) are shown for wild-type cells and mutant cells across 300 bp 

(chr10:85,539,550-85,539,850). a) Upon mutating the Sox2 motif, the Sox2 footprint is 

lost as predicted. b) In contrast, mutating the Nanog motif does not noticeably affect Sox2 

binding. c) Consistent with directional cooperativity, the Sox2 mutation does however affect 

Nanog binding, which is reduced throughout the region as predicted. d) Similarly, mutating 

the Nanog motif not only abrogates the Nanog footprint, but also results in reduced binding 

nearby as predicted. See Extended Data Fig. 8, Supplementary Fig. 14 for reproducibility 

validations.
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